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A Complete Solution of the Inductive Iris with TE,,

Incidence in Rectangular Waveguide

JOSEPH C. PALAIS, MEMBER, IEEE

Abstract—A TE~o wave incident on an inductive metal iris in a rec-

tangular wavegoide excites a reflected and a transmitted wave in the

TE~o mode. The reflection and transmission coefficients describing these

waves are compnted. In addition to the incident mode, a number of other

modes are excited by the discontinuity. The amount of coupIing to these

other modes, given by coupling coefficients, is determined using the varia-

tional technique. The method developed makes it possible to find the cou-

pling to any desired mode without first finding the coupling to any other

mode or group of modes. The analysis shows under what conditions cer-

tain modes can be suppressed or eliminated. The method should be ap-

plicable to other problems of interest where modes other than the incident

one are excited.

Since the reflection, transmission, and coupling coefficients are known,

the totrd field at any point in the wavegnide can be computed. As an

example, the total field at the discontinuity when the TEIO mode is inci-

dent is calculated. The result closely resembles the expected result (of zero

electric field over the metal iris).

I. INTRODUCTION

T

HE INDUCTIVE metal iris with zero thickness in

rectangular waveguide (see Fig. 1) has been exten-

sively studied and documented [1 ]–[5 ]. In the reports

just cited, finding the reflection coefficient when the TEIO

mode was incident was the main goal. It was found in these

derivations that the problem did not have to be solved com-

pletely (that is, the amount of excitation of higher-order

modes did not have to be found) to obtain the reflection co-

efficient. Basically, this paper derives relatively simple ex-

pressions for the coupling coefficients. These coefficients

give the amount of coupling to any of the higher-order

modes. The entire field in the aperture (or indeed anywhere

in the waveguide) can be found from this information. In

addition, the analysis considers the case where higher-order

TE~O modes are incident and derives their coupling to other

modes (lower-order as well as higher-order). This informa-

tion is useful when two or more waveguide discontinuities

are close together and the various modes excited by one

obstacle act upon the other obstacle. Collin, while consider-

ing closely spaced capacitive irises, calculated the reflection

and coupling coefficients for two interacting modes [4],

The results of this paper are applicable to the case of

propagation in oversize rectangular waveguide where modes

other than the TElo mode can propagate. Oversize wave-

guide is often used at millimeter wavelengths and for high-

power devices at longer wavelengths.

II. REFLECTION COEFFICIENTS

The infinitely thin iris in a rectangular waveguide is

shown in Fig. 1. The TEkO mode is incident so that only the
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y-component of the electric field exists in the waveguide and

the fields are independent of they-coordinate. Thus, only the

set of TEZO modes are included in the solution. A time de-

pendence e@’ is assumed. The electric field is given by

2>0 (2)
1=1 a

where

17 2

()

712 = —
– ~02 and k02 = 0J2fiE.

a

The quantity RW is the reflection coefficient. It represents

the relative amplitude of the wave reflected in the same mode

as the incident wave. The Rk1terms (with 1# k) are called the

coupling coefficients and represent excitation of modes dif-

ferent from the incident one. The T~~ terms are the usual

transmission coefficients. Rll has been computed in refer-

ences [1 ]–[5 ]. R~k, for kz 1 will be computed here by a

method similar to that used by Collin [6] to find R1l. The

RkI terms will be calculated in Section III.

Since the electric field is continuous at z= O, we have

1+Rkk = Tkk and Rk ~= Th~for 1# k. Thus, a determination of

the Rk~ and R~z terms solves the problem completely. The

infinitely thin iris can be represented by a pure shunt admit-

tance (see Fig. 2). This admittance across a transmission

line with unit characteristic impedance is related to the

reflection coefficient produced by Y~= – 2Rkk/(1 +RbJ.
A variational expression for the admittance of the iris

when the TEkO mode is incident is found to be

[
~ $’ ~i ~ Ek(x) sin ~ dz]’

yk =
AP a

[s lmx 2

1
(3)

~k(~) sin — d$
AP a

where the prime denotes the 1= k term is to be omitted in

the summation. This equation is similar to that obtained

by Collin for the case of TEIO incidence [7]. The integrations

extend over the aperture.

Integration by parts changes the trial function from E~(x)

to its derivative in (3). The summation in the resulting ex-

pression can be broken into a part that can be explicitly

summed and a part that converges quickly. After some

manipulation the resultant variational expression for the

admittance is
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A method of determining the b coefficients is given by Collin

In (4), Bl= (’Yt/12)–(m/la) and FJO) dO/dx= d&(X)/dX. Also, [8] along with a few examples for the symmetrical case

al and az are given by (a,= O). A more complete lis~ of values is given in Table I.

In general, for the” TEkO mode incident, we would have

\ \

F~(0) = ~ K. cos co. (7)
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Fig. 1. Perfectly conducting iris in rectangular waveguide.
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This could be put into (4) and the stationary property of

that equation used to determine Yk. For practical purposes

only a few terms of (7) could be retained in order to obtain

numerical results. Since Y~ in (4) is relatively insensitive to

the trial function, we will take just one term, the c= k term.

I

I

VALUES OFbnm

bn(~-~)

W(4CY12-i- 6az2— 3)
01aj(32alz + 24aj2 — 16)

rXIC2g2(80W2 + hl)mz — 30)

C21CY23(160a~z+ 60a22 — 48

aIaZ4(280a12 + 84az2 — 70)

I

I\

Fig. 2. Equivalent circuit of the iris discontinuity,

TABLE I

bn(n-,)

1 – 8a12 – 40-J2 + 8a14 + 3CW4+ 24aIzaz2

w(5 — 60cw2 — 15czj2+ 80~,4 + 10cu4 + 120 CUZCM2)

a2z(9 — 144a1z – 24a,2 + 240a,4 + 15a24 + 240a,2az2)

a23(14 — 280a12 — 35az2+ 560a14 + 21a24 + 320a12a72)

n
—

5 al(5 –20C212–40CM2 +16c214 + 30a2’+80aI’a2’)

6 a,a,(36 – 192a,2 – 124c2,2 + 192a,4+120az4 +480a,9a,2) 32ale –48alt+18~lZ —1 + 240~14~z2 —144a12a22+9a22 +18a12~24

–18az4+ 10a2e

7 Q1cw2(168 – 1120a,2–280a2*+ 672a14+210a24+1120 al*a..2) a2(448LY16–560M4+168CW2 –7+1680a,4a2z –840a12a,z + 42a2Z

+840a1’a24 – 70a,4+35m’)
—
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That is, assume F,(O) = Kk cos M. For large apertures this

assumed field distribution should be fairly accurate. For

example, if d= a (no iris present) this distribution is exact.

As the aperture diminishes, this trial function probably

becomes less accurate. The stationary characteristic of (4)

will “absorb” part of the error. As will be shown in Section

IV, the assumed trial function gives reasonable results

when used in (4) even for the case of zero aperture (d= O).
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This is a form of the reciprocity relationship in the wave-

guide. Usually only the TEIo mode can propagate in the

waveguide. If we take the case of k> 1 and assume k> 2,
then Yk> ‘y t. Thus Rk 1> R t~. That is, the coupling from a

high-order mode to a low-order mode is greater than the

coupling from the low-order mode to the high-order mode.

Integrating by parts and making the same changes as in

Section II results in (9) becoming

putting this trial function into (4) and setting bkk= azk

gives

This equation is suitable for direct calculation of yk since

the infinite summation converges quickly. Further analysis

of (8) is performed in Section IV. This solution reduces to

Collin’s solution [9] if we take k= 1 and assume a sym-

metrical pair of irises.

III. COUPLING COEFFICIENTS

In this section the coupling coefficients are calculated ex-

plicitly. This is done by finding a variational expression

for these terms directly. In this section we will be assuming

that k+ 1.
A variational expression for RkZ iS

H ~@)~&#)G(X ] d)dwkc’
~k AP AP—=
RI,Z s lc?rx

s

(9)

El(x) sin —— dx Ek(x’) sin” dx’
AP a AP a

where G(x I x’) is defined by

rwx’
G(z ) x’) = ~ ~. sin ‘:x sin — (lo)

n=l a a

and Ek and El are, respectively, the aperture fields when the

TEkO and TE,O modes are incident. The value of Rki in (9)
depends on the functional form of El and Ek but not on

their amplitudes.

It may be noted that since the right side of (9) is sym-

metrical in k and 1, then

(11)

(12)

In general, we could choose

~z(6) = ~ & COSde, Fk(o’) = ~ Kc COSC19’ (13)
d=O C=o

where N and M are finite integers. The Ritz procedure could

then be used to determine the unknown coefficients Ld and

K. and/or the value of Rkz. For the trial functions, assume

FL(O) = Li cos 10+ L~ cos kO (14a)

Fk((?) = Kk COSko’ + K1 COS10’. (14b)

One justification for using these trial functions is that

reasonable results are obtained. It will be shown that these

functions produce solutions for the coupling coefficients

which agree with the known solutions for the cases of no

iris (d= O) and a short circuit (d= a). The solutions also

agree with the case of a symmetrical iris, where no coupling

can exist between the kth and lth mode if 1—k is odd, Finally,

the stationarity of (12) and the use of the Ritz procedure to

eliminate the coefficients in (14) serve to smooth out errors

due to differences between the actual fields and those

postulated.

When (14) is used in (12) an algebraic expression for

7k/Rk t is obtained in terms of the unknown coefficients K
and L. The stationary nature of the result is taken advantage

of by setting the partial derivatives of 7JR~ t with respect

to the unknown coefficients equal to zero. The determinant

of the resulting equations is then set equal to zero to obtain
the coupling coefficient. The result is

%+’ – ; Quo’

fihz’ Q,) – ;
~k

.—

Rkl I Qkk Qkt

1> k (15)

I
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where

The value of R,l for k>1isfoundbyusing(11) and (15).

We can use (15) for direct calculation or further simplify it

as in the following section.

IV. QUASI-STATIC SOLUTIONS

Simplifications in (8) and (15) can be obtained if we make

the quasi-static approximation thatl 7. = n7r/a for n >1. Then

B.= O for n> 1 and (8) becomes

“=a(’’-:)k’+i+%l%l “7)
For k= 1 this becomes

{[
YI = ~ CSC2

1 }
;(2.U+d) Csc’:–l . (18)

71a

This solution checks with that obtained by Ghose [10]. If

the irises are symmetrical, then 2xl+d= a and

“=%(CSC231)‘:co”:”‘1’)
If k> 1, then bl~= O and (17) becomes

for 1 even, i.e., modes with odd symmetry about x= a/2 are

not excited by the TE1O incident wave. This is the expected

result due to the symmetry of the incident TEIO mode and

the symmetry of the discontinuity. A few expressions for RI 1

for 1 odd are given in Table II.

Using the equations in Table II, we can calculate the

value of iris separation d required to suppress specific modes.

Rla = O only if d= O or d= a. That is, if the irises form a

complete short circuit or are omitted entirely, R13= O. These

two cases are evident from an exact analysis. Rls= O, if

d= O, d= a, or d= a/2. The value d= a/2 is interesting as in

this case the edges of both irises lie exactly halfway between

a maximum and a zero of the electric field of the TE50 mode.

~17=0 if d= O,d= a, d= O.354a, or d= O.645a. For d= O.354a
and d= 0.645a the edges of the irises again lie exactly be-

tween a maximum and a zero of the TE70 electric field.

It is interesting to calculate the total electric field at the

z= O plane as predicted by (1) with the value of R1l obtained

from (19) and the values of Rls, R15,and Rlr obtained from

Table II. The results are plotted in Fig. 3 for the case when

d= 0.75a. The close agreement with the expected result of

zero field over the iris gives added confidence to the method

and choice of trial functions. The maximum deviation from

the known result is at the iris edge (x= O.125a and x= 0.875a).
The error at this point can be described by the ratio of the

field at the edge to the field at the center of the waveguide

(x= a/2). The error in this case is 11.5 percent.

“=2{ CSC2’[22X’+4CSC2EW ‘>’ ’20)
TABLE II

VAU.JESOF R, z FOR TE,.2 MODE INCIDENCE ON A SYMMETRICAL PAIR

If the irises are symmetrical, (20) becomes OF IRISES. QUASI-STATIC SOLUTION. ciz = sin 7rd/2a

l?,, = Sin’k ~ – 1 k>l. (21) RIS =
CZ7J1CY22(CX22 — 1)

7(1 — ~22) + ayla22

For the special case of no iris (d= a), we find that RM = O
as required. For the case where d= O and a short circuit

appears across the waveguide, then (21) correctly gives

R~~= – 1. These results further justify the use of the trial

function assumed.

Next, the quasi-static approximations will be used to

simplify the expressions for the coupling coefficients. These

approximations applied to (16) give Q~.’ = O for d or c

greater than unity. For d and c equal to unity, we have

QII’ = –BJbn)2. Thus, for k= 1, (15) gives

bll

[
Ru=- —

‘ylaz 1 1>1. (22)
lT

1
— (1 – CY2’) + ‘yla2’

a ~

If the iris is symmetrical, then al= O and az = sin ~d/2a.
Then, as seen from Table I, b ~1= O for 1 even. Thus, R,, = O

R17 = (5a,4 – 5(1,2 + 1)R13

1This approximation is suitable when only the TEN mode can
propagate in the waveguide. Then M is real for n> 1. (If higher-order
modes are allowed to propagate, we could let 7.= nr/a for n> 1, where
the TEJ, mode is the highest-order propagating mode.)

Fig. 3. Electric field at the iris discontinuity for d= O.75a using the
quasi-static solutions for the reflection and coupling coefficients.
The TE,o mode is incident.
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A very small change in the results of Fig. 3 are obtained

if we include modes higher than the TE70 mode in (l). If

we use (8) and (15) instead of the quasi-static approxima-

tions the error is reduced a small amount (to 10.3 percent).

More accurate results can be obtained by including more

terms in the trial functions.

Finally, the quasi-static approximations can be applied

to (15) with k> 1. The result is

~~lkbkk
Rkt = — ii>l, l>lc.

1
(23)

An analysis of (23) using Table I shows that R, ~=O if

d= a or d= O. R~~is also zero if the iris is symmetrical and

l–k is odd. This correspondence with known results adds

confidence to the use of the trial functions (14).

V. SUMMARY

The variational technique permits us to find the reflection

coefficient and the coupling coefficients independently. In

order to obtain equations for the reflection and coupling

coefficients easily, relatively simple trial functions can be

chosen for use in the variational expressions. The results

obtained in the text reduce to known solutions for the

degenerate cases of no iris (d= O) and a short circuit (d= a).
If more accurate results are required, more terms in the

trial functions may be included. From the reflection and

coupling coefficients we can construct the entire field at any

point in the waveguide. Particularly interesting is the field

at the plane of the aperture. This field distribution can be

calculated with errors on the order of 12 percent.

Certain modes can be suppressed from the reflected waves.

This could be useful in some application where a particular

mode is harmful. Alternatively, it might be desirable to

excite some particular mode. The analysis could be used to

find how to do this efficiently.

From (11) we see that the coupling from a high-order
mode to a low-order mode is greater than the coupling from

a low-order mode to the high-order one.

The derivations in the paper apply to cases where any

number of TE~O modes may propagate in the waveguide.

Numerical results were obtained for the case where only the

TE,O mode was propagating but suggestions were made for

including multimode propagation. Results of this type

would be applicable to propagation in oversized rectangular

waveguide such as that used at millimeter wavelengths.
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