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A Complete Solution of the Inductive Iris with TE,,
Incidence in Rectangular Waveguide

JOSEPH C. PALAIS, MEMBER, IEEE

Abstract—A TE;, wave incident on an inductive metal iris in a rec-
tangular waveguide excites a reflected and a transmitted wave in the
TE mode. The reflection and transmission coefficients describing these
waves are computed. In addition to the incident mode, a number of other
modes are excited by the discontinuity. The amount of coupling to these
other modes, given by coupling coefficients, is determined using the varia-
tional technique. The method developed makes it possible to find the cou-
pling to any desired mode without first finding the coupling to any other
mode or group of modes. The analysis shows under what conditions cer-
tain modes can be suppressed or eliminated. The method should be ap-
plicable to other problems of interest where modes other than the incident
one are excited.

Since the reflection, transmission, and coupling coefficients are known,
the total field at any point in the waveguide can be computed. As an
example, the total field at the discontinuify when the TE;, mode is inci~
dent is calculated. The result closely resembles the expected result (of zero
electric field over the metal iris).

1. INTRODUCTION

HE INDUCTIVE metal iris with zero thickness in
Trectangular waveguide (see Fig. 1) has been exten-
sively studied and documented [1}-[5]. In the reports
just cited, finding the reflection coefficient when the TE,
mode was incident was the main goal. It was found in these
derivations that the problem did not have to be solved com-
pletely (that is, the amount of excitation of higher-order
modes did not have to be found) to obtain the reflection co-
efficient. Basically, this paper derives relatively simple ex-
pressions for the coupling coefficients. These coefficients
give the amount of coupling to any of the higher-order
modes. The entire field in the aperture (or indeed anywhere
in the waveguide) can be found from this information. In
addition, the analysis considers the case where higher-order
TE;, modes are incident and derives their coupling to other
modes (lower-order as well as higher-order). This informa-
tion is useful when two or more waveguide discontinuities
are close together and the various modes excited by one
obstacle act upon the other obstacle. Collin, while consider-
ing closely spaced capacitive irises, calculated the reflection
and coupling coefficients for two interacting modes [4],
The results of this paper are applicable to the case of
propagation in oversize rectangular waveguide where modes
other than the TE,; mode can propagate. Oversize wave-
guide is often used at millimeter wavelengths and for high-
power devices at longer wavelengths,

II. REFLECTION COEFFICIENTS

The infinitely thin iris in a rectangular waveguide is
shown in Fig. 1. The TE;, mode is incident so that only the

Manuscript received February 2, 1966; revised October 21, 1966.
The author is at the College of Engineering Sciences, Arizona State
University, Tempe, Ariz.

y-component of the electric field exists in the waveguide and
the fields are independent of the y-coordinate. Thus, only the
set of TE;, modes are included in the solution. A time de-
pendence et is assumed. The electric field is given by
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The quantity Ry is the reflection coefficient. It represents
the relative amplitude of the wave reflected in the same mode
as the incident wave. The R;; terms (with /> k) are called the
coupling coefficients and represent excitation of modes dif-
ferent from the incident one. The T}, terms are the usual
transmission coefficients. Ry; has been computed in refer-
ences [1]-[5) Ru, for k>1 will be computed here by a
method similar to that used by Collin [6] to find R;y. The
Ry.: terms will be calculated in Section III.

Since the electric field is continuous at z=0, we have
1+ Ry =Ty, and Ry =T, for Ik, Thus, a determination of
the Ry and R;; terms solves the problem completely. The
infinitely thin iris can be represented by a pure shunt admit-
tance (see Fig. 2). This admittance across a transmission
line with unit characteristic impedance is related to the
reflection coefficient produced by Y,= —2Ru./(1+ Ruz).

A variational expression for the admittance of the iris
when the TE,, mode is incident is found to be
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where the prime denotes the /=k term is to be omitted in
the summation. This equation is similar to that obtained
by Collin for the case of TEy, incidence [7]. The integrations
extend over the aperture.

Integration by parts changes the trial function from E,(x)
to its derivative in (3). The summation in the resulting ex-
pression can be broken info a part that can be explicitly
summed and a part that converges quickly. After some
manipulation the resultant variational expression for the
admittance is
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In (4), B,=(v/P)—(x/la) and F,(8) d8/dx=dE(x)/dx. Also,

a; and a, are given by
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A method of determining the b coefficients is given by Collin
[8] along with a few examples for the symmetrical case
(a1=0). A more complete list of values is given in Table I.

In general, for the TE;, mode incident, we would have

Fi() = X K, cos ch.
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This could be put into (4) and the stationary property of

\ that equation used to determine ¥;. For practical purposes
y \ only a few terms of (7) could be retained in order to obtain
A \ numerical results. Since Y in (4) is relatively insensitive to
\ the trial function, we will take just one term, the ¢=k term.
k—d—,
\ O O
\
\
X Yk
Z O- O
Fig. 1. Perfectly conducting iris in rectangular waveguide. Fig. 2. Equivalent circuit of the iris discontinuity.
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That is, assume Fy(0)=K; cos k. For large apertures this
assumed field distribution should be fairly accurate. For
example, if d=a (no iris present) this distribution is exact.
As the aperture diminishes, this trial function probably
becomes less accurate. The stationary characteristic of (4)
will “absorb” part of the error. As will be shown in Section
IV, the assumed trial function gives reasonable results
when used in (4) even for the case of zero aperture (d=0).

K fo ’ fo "FO)Fu(@) é[%
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This is a form of the reciprocity relationship in the wave-
guide. Usually only the TE;; mode can propagate in the
waveguide. If we take the case of k>/ and assume k>2,
then v;>v: Thus Ri;> Ry. That is, the coupling from a
high-order mode to a low-order mode is greater than the
coupling from the low-order mode to the high-order mode.

Integrating by parts and making the same changes as in
Section II results in (9) becoming
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Putting this trial function into (4) and setting bu=a®
gives
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This equation is suitable for direct calculation of Y; since
the infinite summation converges quickly. Further analysis
of (8) is performed in Section IV. This solution reduces to
Collin’s solution [9] if we take k=1 and assume a sym-
metrical pair of irises.

IT1. CourLING COEFFICIENTS

In this section the coupling coefficients are calculated ex-
plicitly. This is done by finding a variational expression
for these terms directly. In this section we will be assuming
that k1.

A variational expression for Ry; is

f E(x)Ew(z")G(x ‘ ydadx’

Ve (9)
Ry .k . lr!
Ei(x) sin—dx Ey(x") sin—dz’
AP a AP a
where G(x|x’) is defined by
G(x] ) = 2 vn sin@ sin nre (10)
n=1 a

and E; and E, are, respectively, the aperture fields when the
TE;y and TE;, modes are incident. The value of Ry; in (9)
depends on the functional form of E; and E;, but not on
their amplitudes.

It may be noted that since the right side of (9) is sym-
metrical in k and J, then
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In general, we could choose

N M
Fi(6) = Z Licosds, Fi(0) = >, K,cosct/ (13)

d=0 =0
where N and M are finite integers. The Ritz procedure could
then be used to determine the unknown coefficients L; and
K, and/or the value of R;;. For the trial functions, assume

Fi(0) = Lycos 10 + Ly cos ko (14a)
Fr(6) = Ky cos ko' + K;cos 9. (14b)

One justification for using these trial functions is that
reasonable results are obtained. It will be shown that these
functions produce solutions for the coupling coefficients
which agree with the known solutions for the cases of no
iris (d=0) and a short circuit (d=a). The solutions also
agree with the case of a symmetrical iris, where no coupling
can exist between the kth and /th mode if /—k is odd. Finally,
the stationarity of (12) and the use of the Ritz procedure to
eliminate the coefficients in (14) serve to smooth out errors
due to differences between the actual fields and those
postulated.

When (14) is used in (12) an algebraic expression for
v/ Ry 1s obtained in terms of the unknown coefficients K
and L. The stationary nature of the result is taken advantage
of by setting the partial derivatives of /R, with respect
to the unknown coefficients equal to zero. The determinant
of the resulting equations is then set equal to zero to obtain
the coupling coefficient. The result is
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The value of Ry; for k>1is found by using (11) and (15).
We can use (15) for direct calculation or further simplify it
as in the following section.

TV. QUASI-STATIC SOLUTIONS

Simplifications in (8) and (15) can be obtained if we make
the quasi-static approximation that! v, =rnr/a for n>>1. Then
B,=0 for n>1 and (8) becomes
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For k=1 this becomes
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This solution checks with that obtained by Ghose [10]. If
the irises are symmetrical, then 2x,4+d=a and
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If the irises are symmetrical, (20) becomes

k> 1.
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For the special case of no iris (d=a), we find that R;=0
as required. For the case where d=0 and a short circuit
appears across the waveguide, then (21) correctly gives
R;,=—1. These results further justify the use of the trial
function assumed.

Next, the quasi-static approximations will be used to
simplify the expressions for the coupling coefficients. These
approximations applied to (16) give Qs'=0 for d or c
greater than unity. For d and ¢ equal to unity, we have
Qu’= — By(b1)?. Thus, for k=1, (15) gives

Ru= ZE Vi —I
It =

L~ 1 — )+ naf_l
a
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(22)

If the iris is symmetrical, then ;=0 and as=sin =d/2a.
Then, as seen from Table I, b;;=0 for / even. Thus, R;,=0

1 This approximation is suitable when only the TE,, mode can
propagate in the waveguide. Then v, is real for n> 1. (If higher-order
modes are allowed to propagate, we could let v, =rnr/a for n> I, where
the TE;, mode is the highest-order propagating mode.)
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for / even, i.c., modes with odd symmetry about x=a/2 are
not excited by the TE,, incident wave. This is the expected
result due to the symmetry of the incident TE;, mode and
the symmetry of the discontinuity. A few expressions for R;;
for / odd are given in Table II.

Using the equations in Table II, we can calculate the
value of iris separation d required to suppress specific modes.
Ry3;=0 only if d=0 or d=a. That is, if the irises form a
complete short circuit or are omitted entirely, Ry3=0. These
two cases are evident from an exact analysis. Ry=0, if
d=0, d=a, or d=a/2. The value d=a/2 is interesting as in
this case the edges of both irises lie exactly halfway between
a maximum and a zero of the electric field of the TE;, mode.
Ry;=0if d=0, d=a, d=0.354a, or d=0.645a. For d=0.354a
and d=0.645a the edges of the irises again lie exactly be-
tween a maximum and a zero of the TEq, electric field.

It is interesting to calculate the total electric field at the
z=0 plane as predicted by (1) with the value of Ry; obtained
from (19) and the values of Rys, Ry5, and Ry; obtained from
Table II. The results are plotted in Fig. 3 for the case when
d=0.75a. The close agreement with the expected result of
zero field over the iris gives added confidence to the method
and choice of trial functions. The maximum deviation from
the known result is at the iris edge (x=0.125g and x=0.875a).
The error at this point can be described by the ratio of the
field at the edge to the field at the center of the waveguide
(x=ay/2). The error in this case is 11.5 percent.

TABLE II

VALUES OF R;; FOR TE; MODE INCIDENCE ON A SYMMETRICAL PAIR
orF IRrises. QUASI-STATIC SOLUTION. az=Ssin =d/2a
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Fig. 3. Electric field at the iris discontinuity for d=0.75a using the

quasi-static solutions for the reflection and coupling coefficients.
The TE;, mode is incident.
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A very small change in the results of Fig. 3 are obtained
if we include modes higher than the TE;, mode in (1). If
we use (8) and (15) instead of the quasi-static approxima-
tions the error is reduced a small amount (to 10.3 percent).
More accurate results can be obtained by including more
terms in the trial functions.

Finally, the quasi-static approximations can be applied
to (15) with k> 1. The result is

_ Fbubu

kl —

(23)

E>1,1> k.

An analysis of (23) using Table I shows that R;;=0 if
d=a or d=0. Ry, is also zero if the iris is symmetrical and
I—k is odd. This correspondence with known results adds
confidence to the use of the trial functions (14).

V. SUMMARY

The variational technique permits us to find the reflection
coefficient and the coupling coefficients independently. In
order to obtain equations for the reflection and coupling
coefficients easily, relatively simple trial functions can be
chosen for use in the variational expressions. The results
obtained in the text reduce to known solutions for the
degenerate cases of no iris (d=0) and a short circuit (d=a).
If more accurate results are required, more terms in the
trial functions may be included. From the reflection and
coupling coefficients we can construct the entire field at any
point in the waveguide. Particularly interesting is the field
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at the plane of the aperture. This field distribution can be
calculated with errors on the order of 12 percent.

Certain modes can be suppressed from the reflected waves.
This could be useful in some application where a particular
mode is harmful. Alternatively, it might be desirable to
excite some particular mode. The analysis could be used to
find how to do this efficiently.

From (11) we see that the coupling from a high-order
mode to a low-order mode is greater than the coupling from
a low-order mode to the high-order one.

The derivations in the paper apply to cases where any
number of TE;, modes may propagate in the waveguide.
Numerical results were obtained for the case where only the
TE, mode was propagating but suggestions were made for
including multimode propagation. Results of this type
would be applicable to propagation in oversized rectangular
waveguide such as that used at millimeter wavelengths.
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